The STREX Cell Stretching System induces mechanical stimuli on living cells in culture media by stretching and compressing them in an environment similar to physiological conditions. The Cell stretching system allows you to elucidate the mechanisms by which cells convert mechanical signals into biochemical responses, in vitro.

High-performance motor and stretch chambers combine to form the innovative, proprietary STREX system.
Automated Cell Stretching System STB-140

Highly versatile standard cell stretching system

- Capable of stretching cells in culture: functions by applying a stress load to cells growing in the CO₂ incubator.
- Simultaneously stretches cells in multiple chambers to enable comparison between samples.
- The system’s mechanical stretching unit operates inside the CO₂ incubator, while the control unit is established outside.
- Detachable stretch chamber mounting unit can be transferred to a clean bench, enabling aseptic operations.

Main Unit
Two versions of the main stretch unit are available, depending on the size of the stretch chamber to be employed: 4 cm², 10 cm². The smaller 4 cm² version supports up to 8 chambers in parallel, whereas the 10 cm² version supports up to 6. The larger 10 cm² chambers are best suited to biochemical research such as gene and protein expression.

Controller
A preprogrammed one-chip microcomputer is embedded into the controller. The stretch ratio and stretch frequency (the stretch pattern) can be configured using the DIP switch on the controller. The controller also regulates the flow of water that cools the main motor driving the stretch unit.

SYSTEM CONFIGURATION

Stretching System Main Unit:
STB-140-04 (for 4 cm² stretch chambers)
STB-140-10 (for 10 cm² stretch chambers)

Control Unit: Generates stretching patterns and regulates motor cooling

Cables: The main stretching unit and the controller are connected by signal cable bundled with the tubing used for water cooling the main unit motor.

SYSTEM SPECIFICATIONS

STB-140-04: Uses 4 cm² chambers, supports up to 8 units
STB-140-10: Uses 10 cm² chambers, supports up to 6 units
Detachable stretch chamber mounting unit can be covered with a lid and placed in a culture plate.

Stretching patterns: up to 64 patterns
Stretch direction: uniaxial
Stretching ratio: up to 20%

Stretch Chambers

The exceptional physical and chemical properties of the silicone elastomer PDMS (polydimethylsiloxane) create a specially flexible thin-membrane chamber.

- High reproducibility: Springy PDMS chambers bounce back from stretching and compression with their original properties intact. Thus, the chambers demonstrate good reproducibility in applications requiring continuous mechanical stretching over prolonged periods.
- Superior transparency: An optically transparent, ultra-thin (100-200 μm) membrane at the well bottom not only makes stretch chambers compatible with optical microscopy techniques, but with fluorescence detection and microscopy as well.
Microscope-Mountable Stretching System

STB-150

The STB-150 enables real-time observation of morphological changes and ion dynamics of cells under the stress of mechanical stretching. The main stretch unit mounts directly on the microscope stage, while the controller directs the stretch unit to apply the desired automated mechanical stretch stimulus on the cells under observation.

SYSTEM CONFIGURATION
- **Main Unit:** Compatible with Nikon and Olympus (standard). Optional support for Zeiss and Leica.
- **Control Unit:** Actuates the main unit to implement the desired stretching pattern cell-stretching functionality for one cell culture and assay environments (optional).

SYSTEM SPECIFICATIONS
- Employs 4 cm² chambers
- **Stretching patterns:** up to 64 patterns
- **Stretch direction:** uniaxial

STB-150B (Basic)

No syncing I/O for camera, manual focus only.

STB-150W (Double Motor)

Stretches from both sides of the chamber to enable cells to remain inside the viewing area at 10x magnification in real time. In order to capture an image at maximum resolution (up to 40x), the motor must be turned off briefly.

Optional Microincubator

SYSTEM CONFIGURATION
- Separate gas cylinder required (Air 95% + CO₂ 5%)

SYSTEM SPECIFICATIONS
- **Temperature:** 37º C
- **Humidity conditions:** Saturated humidity

Microscope-Mountable Biaxial Stretching System STB-190-XY

Stage-mountable system with biaxial stretching and compression functionality

SYSTEM CONFIGURATION
- **Main Unit:** Compatible with Nikon and Olympus (standard). Optional support for Ziess and Leica.
- **Control Unit:** Actuates the main unit to implement the desired stretching pattern

SYSTEM SPECIFICATIONS
- Employs 4 cm² chamber designed for XY bidirectional stretching
- **Stretching patterns:** up to 64 patterns
- **Stretch direction:** XY biaxial; also supports uniaxial stretching
System Features:

- **Wide range of stretch patterns:**
 The system can be configured for eight different settings for the stretch ratio – the degree of stretch desired – and
 eight for the repetition frequency of the stretch movement. There are 64 possible stretching patterns in all.

- **Stretch chamber:**
 Specially developed silicone film chamber facilitates a variety of lab analysis techniques, including cell fixation and
 fluorescent imaging.

- **Uniform load:**
 Every cell is subjected to uniform strain along the stretch axis. In the non-axial direction, the secondary load is much
 weaker.

- **High reproducibility:**
 The high-precision, high-torque stepping motor in the stretch unit enables stable motion at a range of speeds, from
 extremely low velocity to high velocity. This motion stability, combined with the superior characteristics of the
 silicone film chamber, produces mechanical stretching that is highly reproducible.

How Are The Stretch Patterns Configured?

- **Stretch Ratio** (Degree of stretch applied)
- **Stretch Frequency** (Repetition frequency/interval of stretch) -
 - Cyclic: Samples subjected to mechanical stretching and relaxation at fixed interval
 - Continuous: Samples subjected to sustained stretching for a predetermined period

<table>
<thead>
<tr>
<th>Stretching Ratio (%)</th>
<th>With sustained time: square-wave pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10% Stretching > Retention for 3 seconds ></td>
</tr>
<tr>
<td></td>
<td>Relax to resume the original state ></td>
</tr>
<tr>
<td></td>
<td>Retention for 3 seconds > (Repeat)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stretching Ratio (%)</th>
<th>With sustained time: sinewave pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stretch gradually in 3 seconds > 10%</td>
</tr>
<tr>
<td></td>
<td>Stretching > Loose gradually in 3 seconds > (Repeat)</td>
</tr>
</tbody>
</table>

How It Works

Extracellular matrix coatings applied to the stretch chamber promote cell adhesion and facilitate cell culture. The adhered cells are then stretched and compressed in culture. Versions of the system that mount on microscope stages enable real-time observation of the changes that the cells manifest in response to these applied stress loads.